Teaching :
I teach mathematics, modelling in biology and computer science in Licence and Masters BEE@Lyon and Bioinfo@Lyon .
Mostly, I write programming courses for biologists, in R and Python, in the form of a tutorials, to give students practical experience, where they develop simulation programs of simple biological models (genetics and population dynamics) in individual-centered mode. This allows them to discover this type of modelling and awakens their in/erest in the role of computational tools in biology. On the modelling part, I design Markov modelling tutorials in R (HMM, phylogeny) in which the students start from the mathematical model and work their way up to data analysis. In math&meth, beyond usual linear algebra, I am interested into teaching data analysis techniques, such as clustering methods & Singular Value Decomposition.
Research:
I work on molecular modeling in evolution, mostly in phylogeny. I currently work on methods and models that focus on branch specific estimates of selection and of other evolutive features (such as GC bias), and also on the inclusion of polymorphism information in phylogenetic scale analysis.
An essential part of my research activity consists of developing the Bio++ suite of libraries (see on Github ), in collaboration with Julien Dutheil (Max Planck Institute for Evolutionary Biology , Plön). Bio++ is a set of C++ libraries for Bioinformatics, including sequence analysis, phylogenetics, molecular evolution and population genetics. Bio++ is Object Oriented and is designed to be both easy to use and computer efficient. Bio++ intends to help programmers to write computer expensive programs, by providing them a set of re-usable tools.
Using these libraries, many softwares are available for maximum likelihood inference, ancestral reconstruction, sequence simulation, in BppSuite , and substitution mapping,branch clustering in TestNH .
I maintain the DGINN pipeline, developed by Léa Picard, a PhD student under my supervision and that of Lucie ÉTIENNE (CIRI, ENS Lyon). DGINN is dedicated to find signs of innovation in a gene family, performing automatically all the process from a sequence to positive selection detection, through homologous sequence retrieval, curation, alignment, reconciliation, recombination detection and finally phylogenetic analysis.
Publications
Display of 31 to 40 publications on 40 in total
A Mixture Model and a Hidden Markov Model to Simultaneously Detect Recombination Breakpoints and Reconstruct Phylogenies
Evolutionary Bioinformatics . 5 : 67-79
DOI: 10.4137/EBO.S2242
Journal article
see the publicationThe heterochromatic copies of the LTR retrotransposons as a record of the genomic events that have shaped the Drosophila melanogaster genome
Gene . 411 : 87-93
Journal article
see the publicationDémasquage des gènes spécifiques d'une espèce génomique du complexeAgrobacterium tumefaciens par AFLP et multicapteur à ADN
7. Colloque national du Bureau des Ressources Génétiques . 7
Conference paper
see the publicationAccounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria
BMC Evolutionary Biology . 8 : 272-272
Journal article
see the publicationHorizontal Gene Transfer Regulation in Bacteria as a ‘‘Spandrel'' of DNA Repair Mechanisms
PLoS ONE . 2 ( 10 ) : e1055-e1066
Journal article
see the publicationMareyMap: an R-based tool with graphical interface for estimating recombination rates
Bioinformatics . 23 : 2188-2189
Journal article
see the publicationA Markovian Approach for the Analysis of the Gene Structure
Prague stringology conference . 19 ( 1 ) : 19-35
Conference paper
see the publicationA computational prediction of isochores based on hidden Markov models
Gene . 385 : 41-49
Journal article
see the publicationUV-Targeted Dinucleotides Are Not Depleted in Light-Exposed Prokaryotic Genomes
Molecular Biology and Evolution . 23 : 2214-2219
Journal article
see the publicationSarment: Python modules for HMM analysis and partitioning of sequences
Bioinformatics . 21 : 3427-3428
Journal article
see the publication